Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Proc Natl Acad Sci U S A ; 120(22): e2217232120, 2023 05 30.
Article in English | MEDLINE | ID: covidwho-2325532

ABSTRACT

As severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infections have been shown to affect the central nervous system, the investigation of associated alterations of brain structure and neuropsychological sequelae is crucial to help address future health care needs. Therefore, we performed a comprehensive neuroimaging and neuropsychological assessment of 223 nonvaccinated individuals recovered from a mild to moderate SARS-CoV-2 infection (100 female/123 male, age [years], mean ± SD, 55.54 ± 7.07; median 9.7 mo after infection) in comparison with 223 matched controls (93 female/130 male, 55.74 ± 6.60) within the framework of the Hamburg City Health Study. Primary study outcomes were advanced diffusion MRI measures of white matter microstructure, cortical thickness, white matter hyperintensity load, and neuropsychological test scores. Among all 11 MRI markers tested, significant differences were found in global measures of mean diffusivity (MD) and extracellular free water which were elevated in the white matter of post-SARS-CoV-2 individuals compared to matched controls (free water: 0.148 ± 0.018 vs. 0.142 ± 0.017, P < 0.001; MD [10-3 mm2/s]: 0.747 ± 0.021 vs. 0.740 ± 0.020, P < 0.001). Group classification accuracy based on diffusion imaging markers was up to 80%. Neuropsychological test scores did not significantly differ between groups. Collectively, our findings suggest that subtle changes in white matter extracellular water content last beyond the acute infection with SARS-CoV-2. However, in our sample, a mild to moderate SARS-CoV-2 infection was not associated with neuropsychological deficits, significant changes in cortical structure, or vascular lesions several months after recovery. External validation of our findings and longitudinal follow-up investigations are needed.


Subject(s)
COVID-19 , White Matter , Female , Male , Humans , SARS-CoV-2 , Brain , Neuroimaging , Neuropsychological Tests , Water
2.
Interact Cardiovasc Thorac Surg ; 35(1)2022 06 15.
Article in English | MEDLINE | ID: covidwho-2273508

ABSTRACT

OBJECTIVES: The need to ration medical equipment and interventions during the coronavirus disease 2019 pandemic translated to an ever-lengthening wait list for surgical care. Retrospective analysis of lockdowns is of high importance to learn from the current situation for future pandemics. This monocentric study assessed the impact of lockdown periods on cardiac surgery cases and outcomes. METHODS: The single-centre cross-sectional descriptive observational study was conducted to investigate the first lockdown period and the following post-lockdown period in comparison to the same periods during the previous 3 years at the Department of Cardiac Surgery at the Medical University of Innsbruck. Data were prospectively collected and retrospectively analysed from the department-specific quality management system. The primary objective was to compare the number of open-heart procedures between the prelockdown and the lockdown period. The secondary objectives were to analyse the characteristics and the outcomes of open-heart procedures. RESULTS: There were no differences in patient demographics. A significant decrease of 29% in weekly surgical procedures was observed during the lockdown period. The surgical case-mix was unaffected: The numbers of aortic valve replacements, coronary artery bypass grafts, mitral valve repair or replacement procedures and others remained stable. The urgency of cases increased significantly, and the general health conditions of patients appeared to be worse. However, outcomes were unchanged. CONCLUSIONS: By implementing a rational patient selection process, the quality of open-heart procedures was maintained even though patients who underwent surgery during lockdown were sicker and more symptomatic.


Subject(s)
COVID-19 , COVID-19/epidemiology , Communicable Disease Control , Cross-Sectional Studies , Humans , Retrospective Studies , SARS-CoV-2
3.
Commun Med (Lond) ; 2(1): 142, 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2118764

ABSTRACT

BACKGROUND: The prognosis of COVID-19 patients with cardiac involvement is unfavorable and it remains unknown which patients are at risk. The virus enters cells via its receptor angiotensin-converting enzyme 2 (ACE2). Myocardial ACE2 expression is increased in structural heart disease (SHD). We, therefore, aimed to analyze correlations between structural heart disease and cardiac SARS-CoV-2 manifestation. METHODS: The clinical course of COVID-19 in patients with structural heart disease was assessed in a prospective cohort of 152 patients. The primary endpoints consisted of hospitalization and survival. Cardiac tissue of 23 autopsy cases with lethal COVID-19 course was obtained and analyzed for (a) the presence of SHD, (b) myocardial presence of SARS-CoV-2 via RT,-PCR, and (c) levels of ACE2 expression using immunofluorescence staining. RESULTS: Structural heart disease is found in 67 patients, of whom 56 (83.60%) are hospitalized. The myocardium is positive for SARS-CoV-2 in 15 patients (65%) in 23 autopsy cases of lethal COVID-19. Moreover, most hearts with evidence of myocardial SARS-CoV-2 have structural heart disease [11 (91,67%) vs. 1 (8,33%), p = 0.029]. Myocardial presence of SARS-CoV-2 is correlated with a significant downregulation of ACE2 compared to negative control hearts (6.545 ± 1.1818 A.U. vs. 7.764 ± 2.411 A.U., p = 0.003). The clinical course of patients with cardiac SARS-CoV-2 manifestation is unfavorable, resulting in impaired survival (median, 12 days and 4.5 days, respectively, HR 0.30, 95% CI, 0.13 to 0.73, p = 0.0005) CONCLUSIONS: We provide evidence for a correlation between SHD, altered ACE2 receptor expression, and cardiac SARS-CoV-2 manifestation. Consequently, structural heart disease may be considered a distinct risk factor for a severe clinical course after infection with SARS-CoV-2. REGISTRATION NUMBER LOCAL IRB: Ethics Committee of Northwestern and Central Switzerland ID 2020-00629; Ethics Committee of the Medical University Innsbruck EK Nr: 1103/2020. GOV NUMBER: NCT04416100.


SARS-CoV-2, the virus that causes COVID-19, binds to ACE2 receptors to gain entry into cells. The ACE2 receptor is a cell surface protein found in many tissues, including the heart. Studies suggest that people with heart disease are likely to have higher levels of ACE2 receptors, which may explain why they are more susceptible to severe illness from COVID-19. In this study, we identified heart disease as a risk factor for hospitalization in 152 patients who tested positive for SARS-CoV-2. The presence of SARS-CoV-2 in the heart was associated with altered levels of ACE2 receptors and with a shortened survival time in patients. These findings provide evidence for a potential link between heart disease, ACE2 receptor levels, and SARS-CoV-2 infection of the heart, and may help doctors to understand the clinical course of patients with heart disease who contract COVID-19.

4.
Eur Heart J ; 43(11): 1124-1137, 2022 03 14.
Article in English | MEDLINE | ID: covidwho-1853027

ABSTRACT

AIMS: Long-term sequelae may occur after SARS-CoV-2 infection. We comprehensively assessed organ-specific functions in individuals after mild to moderate SARS-CoV-2 infection compared with controls from the general population. METHODS AND RESULTS: Four hundred and forty-three mainly non-hospitalized individuals were examined in median 9.6 months after the first positive SARS-CoV-2 test and matched for age, sex, and education with 1328 controls from a population-based German cohort. We assessed pulmonary, cardiac, vascular, renal, and neurological status, as well as patient-related outcomes. Bodyplethysmography documented mildly lower total lung volume (regression coefficient -3.24, adjusted P = 0.014) and higher specific airway resistance (regression coefficient 8.11, adjusted P = 0.001) after SARS-CoV-2 infection. Cardiac assessment revealed slightly lower measures of left (regression coefficient for left ventricular ejection fraction on transthoracic echocardiography -0.93, adjusted P = 0.015) and right ventricular function and higher concentrations of cardiac biomarkers (factor 1.14 for high-sensitivity troponin, 1.41 for N-terminal pro-B-type natriuretic peptide, adjusted P ≤ 0.01) in post-SARS-CoV-2 patients compared with matched controls, but no significant differences in cardiac magnetic resonance imaging findings. Sonographically non-compressible femoral veins, suggesting deep vein thrombosis, were substantially more frequent after SARS-CoV-2 infection (odds ratio 2.68, adjusted P < 0.001). Glomerular filtration rate (regression coefficient -2.35, adjusted P = 0.019) was lower in post-SARS-CoV-2 cases. Relative brain volume, prevalence of cerebral microbleeds, and infarct residuals were similar, while the mean cortical thickness was higher in post-SARS-CoV-2 cases. Cognitive function was not impaired. Similarly, patient-related outcomes did not differ. CONCLUSION: Subjects who apparently recovered from mild to moderate SARS-CoV-2 infection show signs of subclinical multi-organ affection related to pulmonary, cardiac, thrombotic, and renal function without signs of structural brain damage, neurocognitive, or quality-of-life impairment. Respective screening may guide further patient management.


Subject(s)
COVID-19 , COVID-19/diagnosis , COVID-19/epidemiology , Cohort Studies , Humans , SARS-CoV-2 , Stroke Volume , Ventricular Function, Left
SELECTION OF CITATIONS
SEARCH DETAIL